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Antiferromagnetism couples electron spin to its orbital motion, thus allowing excitation of electron-spin
transitions by an ac electric rather than magnetic field—with absorption, exceeding that of common electron
spin resonance at least by four orders of magnitude. In addition to potential applications in spin electronics, this
phenomenon may be used as a spectroscopy to study antiferromagnetic materials of interest—from chromium
to borocarbides, cuprates, iron pnictides, and organic and heavy fermion conductors.
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I. INTRODUCTION

Broad research effort has been underway1–3 to build a new
generation of electronic devices, which would manipulate
and monitor carrier spin and charge on an equal footing.
Magnetic semiconductors4,5 and giant magnetoresistance
materials,6 as well as semiconductors with spin-orbit
interactions,7 have been much scrutinized with this goal in
mind.

By contrast, antiferromagnets have enjoyed far less atten-
tion in this context. Here, I show that, in fact, antiferromag-
nets in their ordered state may prove useful for spin manipu-
lation by electric field, as antiferromagnetism couples
electron spin to its orbital motion. This coupling manifests
itself especially vividly in a magnetic field, where it takes the
form of anisotropic Zeeman interaction with a momentum-
dependent g-tensor. This dependence turns a common Zee-
man term into a spin-orbit coupling HZSO

HZSO = − �B�g��H� · �� + g��p��H� · ��� . �1�

Hereafter, H� = �H ·n�n and H�=H−H� are the longitudinal
and transverse components of the magnetic field H with re-
spect to the unit vector n of the staggered magnetization, �B
is the Bohr magneton, while g� and g��p� are the longitudi-
nal and transverse components of the g-tensor. While g� is
momentum-independent up to small relativistic corrections,
g��p� has a set of zeros in the Brillouin zone �BZ� and thus
substantially depends on the quasiparticle momentum p. This
remarkable fact is dictated by the symmetry of antiferromag-
netic state,8–10 and gives rise to a number of interesting ef-
fects.

One such effect amounts to excitation of spin-resonance
transitions by an ac electric field, with resonance absorption
exceeding that of common electron spin resonance �ESR� by
over four orders of magnitude. This phenomenon does not
rely on the presence of localized magnetic moments, and is
possible both for itinerant electrons and for impurity-bound
electron states. Hence it can be used as a resonance spectros-
copy, tailor-made to study antiferromagnets of great interest
from chromium to cuprates, borocarbides, iron pnictides, as
well as organic and heavy fermion materials.

II. THE SPECTRUM

Here, I illustrate this effect by an example, which may be
relevant to a number of antiferromagnetic conductors: I

study electric excitation of itinerant-electron resonance in a
weakly-doped two-dimensional antiferromagnetic insulator
on a lattice of square symmetry, whose conduction-band
minimum falls at the center � of the magnetic Brillouin zone
�MBZ� boundary, as shown in Fig. 1�a�. Both the two-
dimensionality and the square symmetry of this example
simplify the description and make it relevant to materials
such as cuprates and iron pnictides, yet neither of the two
features is essential to the effect. Numerous other antiferro-
magnets of different crystal symmetries and effective dimen-
sionalities are discussed in Ref. 10. Magnetic field is as-
sumed small on the scale of the electron excitation gap � and
of the reorientation threshold, and thus does not perturb
antiferromagnetic order.

The effect is most vivid for the staggered magnetization
axis n, pointing along the conducting plane, which is the
case in several electron-doped cuprates.11,12 The magnetic
field H is nearly normal to n, which tends to happen due to
spin flop. It is this very geometry that I consider hereafter;
orientation of the field with respect to the conducting plane
may be arbitrary, as shown in Fig. 1�b�.

At low doping, the carriers concentrate in a small vicinity
of the band minimum �, and the Hamiltonian can be ex-
panded around it. By symmetry, g��p� in HZSO �Eq. �1��
vanishes upon approaching the MBZ boundary, linearly in a
generic case9,10 and can be recast as g��p�=g�

py�

� with a con-
stant �, for

py�

� �1. Here, py is the component of the momen-
tum deviation from the band minimum, locally transverse to
the MBZ boundary, as shown in Fig. 1�a�. The length scale �
is of the order of the antiferromagnetic coherence length
�vF /�, and may be of the order of the lattice constant or
much greater.9,10

Near the band minimum, the kinetic energy is quadratic in
p; for simplicity, I consider isotropic effective mass m, and
introduce ���Bg�H. For the field at a finite angle with the
conducting plane, the Hamiltonian reads

H =
1

2m
�p −

e

c
A�2

− ��� · �� −
�

�
�p −

e

c
A�

y
��� · �� ,

�2�

where A is the electromagnetic vector potential.13

In a purely transverse field ��� =0�, the spin-up and the
spin-down projections onto �� decouple and have identical
Landau spectra
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En = 	0�n +
1

2
� , �3�

where 	0��
eH0

mc is the cyclotron energy, and H0 is the nor-
mal component of the field with respect to the conducting
plane. This degeneracy becomes explicit upon completing
the square in Eq. �2� with respect to �p− e

cA�y, or upon per-
forming a nonuniform spin rotation


 → exp�i
y

�

m�

�
��� · ���
 , �4�

which, in a purely transverse field ��� =0�, eliminates ��

from the Hamiltonian altogether.
In the Landau gauge A= �0,xH0�, this spin degeneracy in

a transverse field acquires a simple interpretation: as shown
in Fig. 2, the guiding orbit centers of the spin-up and the
spin-down states split apart by the distance ��2�

	�

	0
along

the x̂ axis in real space, with the spin-quantization axis cho-
sen along ��.

To study the spectrum in an arbitrary field, it is convenient
to use a different Landau gauge: A= �−yH0 ,0�. The spin ro-
tation �4� removes the transverse field term, and turns the
uniform longitudinal field �� into a spiral texture ��� with a
constant pitch q�

2m�	�

�2 along the ŷ axis in the conducting
plane

��� = �� cos�qy� + n� � �� sin�qy� , �5�

where n� is the unit vector along ��. It is helpful to recast
the cyclotron motion in terms of ladder operators as per
a+a+

	2
� y

lH
−

pxlH

� and a−a+

i	2
�

pylH

� , where lH=	 �c
eH0

is the magnetic
length. Now, the Hamiltonian �2� reads

H = 	0�a+a +
1

2
� − ���� · �� , �6�

with y in ��� of Eq. �5� expressed via the ladder operators.
According to Eq. �6�, in the limit of a weak longitudinal

field �	� �	0�, the spin precesses at a characteristic fre-
quency 	�, which is small compared with the cyclotron fre-
quency 	0 of the orbital motion. In this limit, the splitting
En of the nth Landau level is given simply by averaging
���� ·�� over the orbital eigenstate 
n� of the first term in Eq.
�6�, leading to

En = 2	�fn� �

lH

	�

	0
 , �7�

where fn���=Ln�2�2�exp�−�2�, and Ln��� is the Laguerre
polynomial.14 The degeneracy is lifted in a peculiar way: for
	� �	0, the splitting En of the nth Landau level decays and
oscillates as a function of �= �

lH

	�

	0
, as shown in Fig. 3. For a

small fixed 	� �	�, this amounts to decaying oscillations
with reducing the angle between the field and the conducting
plane, as shown in Fig. 1�b�.

The factor fn��� in Eq. �7� is of a simple origin. The
longitudinal component �� hybridizes the two states in Fig.
2 and lifts their degeneracy. Indeed, the splitting vanishes as
the distance �=2�

	�

	0
between the guiding orbit centers ex-

ceeds the wave-function size lH
	n+1. The oscillations on the

background of this decay are due to spatial oscillation of the
two wave functions for n�0.

III. ELECTRIC EXCITATION OF SPIN RESONANCE

The momentum dependence of g��p� has a spectacular
spectroscopic manifestation: excitation of spin-resonance

FIG. 1. �Color online� Geometry of the problem. �a� The BZ of
a Néel antiferromagnet on a lattice of square symmetry and its
MBZ �shaded diagonal square�. The line of zero g��p� must contain
the entire MBZ boundary, shown in red online. Point � is the BZ
center, point � is the center of the MBZ boundary, where the
conduction-band minimum is assumed to occur, and py is the com-
ponent of the momentum deviation from the minimum, locally
transverse to the MBZ boundary. �b� Real-space geometry: stag-
gered magnetization axis n, pointing along the conduction plane,
and nearly transverse magnetic field H, drawn normal to n here;
components H� and H0 are normal to n and to the conducting
plane, respectively.

x

Ψ( )x Ψ( )x

λ

FIG. 2. �Color online� Splitting of degenerate spin states in real
space: the spin-up state 
↑�x� and the spin-down state 
↓�x� at the
lowest Landau level, with the spin-quantization axis chosen along
��. In a purely transverse field ��� =0�, the two wave functions

remain degenerate, but split by the distance �=2�
	�

	0
along the x̂

axis in real space.
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transitions by an ac electric field—the very same transitions
that are normally excited by an ac magnetic field in an ESR
experiment.

I name this phenomenon Zeeman electric-dipole reso-
nance �ZEDR� to note its similarity with electric dipole spin
resonance �EDSR� in semiconductors and semiconducting
heterostructures with spin-orbit coupling.15

A. Resonance in a quantizing field

To study the effect for discrete Landau levels, notice that
a uniform ac electric field E�

y along the ŷ axis couples to the
y-component ey=elH

a+a+

	2 of the electron dipole moment.
With E�

y , the Hamiltonian �6� reads

H = 	0�a+a +
1

2
� − ���� · �� − e

a + a+

	2
lHE�

y . �8�

In the absence of a longitudinal component ��, the last
term in Eq. �8� induces only the cyclotron resonance: spin-
conserving electric dipole transitions between the adjacent
Landau levels, with the matrix element MCR

MCR = �n + 1,�
eyE�
y 
n,�� = elHE�

y	n + 1

2
, �9�

whose scale is set by the Larmor radius lH
	n+1.

A small longitudinal component 	� �	0 changes this pic-
ture, as ���� ·�� couples the electron spin to its orbital mo-
tion. As a result, the nth Landau level eigenstate 
n�� with
spin projection � on the direction of �� acquires a small
admixture of other states 
m��, and the ac electric field be-
gins to induce a number of previously forbidden transitions.

Here, I restrict myself to spin-flip transitions within the
same Landau level,16 excited by an ac electric field as shown
in Fig. 3. Treating the admixture of other Landau levels to

the first order in ���� ·��, one finds17 the ZEDR matrix ele-
ment MZEDR��n↑
eyE�

y 
n↓�

MZEDR = − 2e�E�
y 	�

	0

	�

	0
Ln�2�2�exp�− �2� , �10�

where �� �
lH

	�

	0
. Apart from the dependence on the orienta-

tion of the field with respect to the conducting plane and to
the staggered magnetization, ZEDR matrix elements are de-
fined simply by the length scale �. Being at least of the order
of the lattice spacing, in a weakly coupled spin-density wave
antiferromagnet ���vF /� �see Refs. 9 and 10� may reach a
10 nm scale.18 At the same time, the ESR matrix elements
are defined by the Compton length �C= �

mc �0.4 pm. The
characteristic ratio of the ZEDR matrix elements to those of
ESR can thus be estimated as �

�C
= 1

�
�

aB
, where aB= �2

me2

�53 pm is the Bohr radius and 1
� = �c

e2 �137 is the inverse
fine-structure constant. Thus, the ZEDR absorption exceeds
that of ESR by about �137· �

aB
�2, which amounts to at least

four orders of magnitude.

B. Resonance in a continuous spectrum

Now, consider a situation, where the dc magnetic field H
couples only to the electron spin, but not to its orbital mo-
tion, which is the case for a field along the conducting plane.
According to Eq. �2�, the field splits the conduction band into
two subbands E��p�

E��p� =
p2

2m
�		�

2 + � py�

�
�2

	�
2 , �11�

and the ac field induces transitions between them. According
to Eq. �2�, a purely transverse field �	� =0� lifts the Kramers
degeneracy by splitting the two degenerate subbands by the
‘distance’ py = 2

�m�	� along the py axis

H =
px

2

2m
+

1

2m
�py −

m�

�
��� · ���2

. �12�

Illustrated in Fig. 4, this is, indeed, a momentum-space coun-
terpart of the real-space splitting in Fig. 2.

In the continuous spectrum, ZEDR may be treated simply
as being induced by the term HZEDR

� = �
�

e
cA�

y ��� ·��. Its ma-
trix element between the states with the spin along and
against the direction of the effective magnetic field
��� +

�py

� ��� is equal to

0 1 2 3 4

0.5

1.0

1.5

En

ζ

Ω 0

FIG. 3. �Color online� The Landau level splitting. The first two
Landau levels En, split by the longitudinal field 	� =	0 /6, are

shown in units of 	0 as a function of �= �

lH

	�

	0
. The levels were

obtained by numerical solution of the Hamiltonian �6�, truncated to
the lowest six levels. The solid arrow indicates the ZEDR transition
at the lowest Landau level, whereas the dashed arrow corresponds
to the cyclotron resonance transition from the lowest to the first
Landau level.

p p
E(p)

y
x

FIG. 4. �Color online� The spin splitting of the conduction band,
sketched after Eq. �12� in a small vicinity of the band minimum at
point �.
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�↑
HZEDR
� 
↓�
2 = � e�E�

y

��
�2 	�

2	�
2

	�
2 + � �py

� 	��2 , �13�

where I used the relation �↓ 
�n̂ ·��
↑ �=n+�nx+ iny for an
arbitrary unit vector n̂.

The ZEDR absorption PZEDR
� is given, according to the

Fermi golden rule, by the product of the modulo squared
�Eq. �13�� of the matrix element of HZEDR

� by the ac field
frequency �, and by �

� , with the subsequent summation over
the Fermi surface, yielding

PZEDR
� =

m

�

�e�E�
y �2

16

sin2 � cos2 �� �H

���4

	�� �H

���2�cos2 � + 2�m�2 sin2 �� − 1��1 − � �H

���2
cos2 ��

, �14�

where � is the electron chemical potential counted from the
bottom of the band, and �H�2	. The result19 is presented in
a form, corresponding to sweeping the magnitude of the dc
field at a fixed angle � to the staggered magnetization n and
at a fixed frequency �. In agreement with Eq. �10�, the
ZEDR matrix elements are again defined simply by the
length scale �.

The lineshape described by Eq. �14� is intrinsically broad-
ened: according to Eq. �11�, in a magnetic field of a generic
orientation, each point at the Fermi surface has its own reso-
nance frequency. Hence the absorption is nonzero in a finite
interval of frequencies, with square-root singularities at the
edges. This intrinsic broadening may be a reason behind the
ESR silence of the cuprates.20

IV. DISCUSSION AND CONCLUSIONS

Electric excitation of spin resonance becomes possible
due to a substantial variation in the g-tensor across the Bril-
louin zone. In antiferromagnetic conductors, this variation is
imposed by symmetry.8–10 Hence, ZEDR shall be found in a
broad range of materials from weakly doped antiferromag-
netic insulators to antiferromagnetic metals. Quantitative de-
tails between these two limits may vary, but the key suffi-
cient condition for ZEDR amounts to a significant variation
in g��p� for the actual carriers.

Zeeman electric dipole resonance is induced by an ac
electric field; to study it, a small sample has to be placed in
a resonator at the electric field maximum. This puts ZEDR in
competition against cyclotron resonance �CR�, the latter gen-
erally being a stronger effect. Nevertheless, these two reso-
nances can be easily distinguished.

First, the CR and the ZEDR frequencies are different. In a
nearly transverse field �	� �	0�, the former is simply the
cyclotron frequency 	0 up to small corrections of the order
of 	� /	0�1, as shown in Fig. 3. The ZEDR frequency is
much smaller, of the order of 	� �	0, and shows the pecu-
liar dependence of Eq. �7� on the magnetic field strength and
orientation.

Second, the ZEDR absorption grows with increasing the
magnetic field and, already in a low field 	0� �2

�F
, becomes

of the same order of magnitude as that of cyclotron reso-
nance: this follows from Eqs. �9� and �10�.21 For materials
with ���F, this crossover scale is small compared with �,

which means that the ZEDR intensity may exceed that of the
cyclotron resonance, while the field is still much smaller than
�, and hence does not perturb the antiferromagnetic order.
This makes an antiferromagnetic conductor with a small ra-
tio �

�F
�1 a promising candidate for the observation of

ZEDR.
This condition is met by a number of materials from

weakly doped antiferromagnetic insulators to antiferromag-
netic metals with a large Fermi surface. Among the latter, the
simplest of opportunities to observe ZEDR may be offered
by chromium,22 an archetypal spin-density wave metal, ever
attracting much attention.23

Among systems more complex, oxychlorides24 and
electron-doped cuprates25 have recently shown the appear-
ance of carriers near the point � at the MBZ boundary at low
doping, which may allow ZEDR, provided that the antiferro-
magnetic correlations are developed well enough. A number
of other relevant materials are discussed in Ref. 10.

A. Experimental issues

In this subsection, I discuss a number of issues, which
may be important for a successful observation of the
electrically-excited electron-spin resonance in an antiferro-
magnetic conductor.

Since the effect hinges on a substantial momentum depen-
dence of the g-tensor, it requires clean samples. Observation
of de Haas–van Alphen oscillations could serve as an experi-
mental criterion of a sufficient sample purity. Similarly, it is
desirable to work with single-magnetic-domain samples.

Thermal fluctuations of the antiferromagnetic order re-
duce the ordered magnetization and scatter the charge carri-
ers; at the same time, directional fluctuations of the staggered
magnetization make the resonance frequency scale 	� vary
in space, leading to an additional smearing of the resonance.
These effects can be suppressed by working well below the
Néel temperature.

The theory above implicitly assumed that the orientation
of the field H with respect to the staggered magnetization n
and to the conducting plane may be varied at will. This re-
quires a sufficient magnetic anisotropy to maintain the orien-
tation of n with respect to the crystal axes, or otherwise spin
flop would reorient n transversely to H. Therefore, H must
be kept below the reorientation field of the material.
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At the same time, the magnetic anisotropy helps to sepa-
rate the electron spin-resonance frequency from that of the
antiferromagnetic resonance:26 the former scales with 	�,
while the latter scales as the square root of the anisotropy
and thus remains finite at zero field. Possible interference
with antiferromagnetic resonance is conveniently suppressed
even further due to the fact that antiferromagnetic resonance
is excited by an ac magnetic field, which has a node at an ac
electric field maximum of the resonator.

Decay of the ac electric field beyond a thin surface layer
of the sample �the skin effect� presents another challenge for
the electric excitation of spin resonance. This issue may be
bypassed by working with films27 thinner than the skin
depth. In the relevant frequency range of 10 GHz, the skin
depth of a good metal such as chromium is of the order of
one �m. Lowering the carrier concentration increases the
skin depth: for various organic conductors and underdoped
cuprates in the 10 GHz range, the skin depth measures doz-
ens of �m.28,29

Previous studies of EDSR in semiconductors �see Refs.
15, 30, and 31� focused on relativistic spin-orbit interaction
terms, those that appear in the absence of magnetic field. By
contrast, in an antiferromagnet, the Zeeman spin-orbit cou-

pling HZSO of Eq. �1� is proportional to the magnetic field,
which renders ZEDR tunable. Yet, as shown above, ZEDR
becomes strong already in a weak field, which turns it into a
promising experimental tool.

ZEDR offers a unique method to investigate the coupling
between electron spin and its orbital motion in antiferromag-
nets. Materials from chromium to borocarbides, cuprates,
iron pnictides, and organic and heavy fermion compounds
may be studied using this phenomenon, and perhaps em-
ployed to manipulate and monitor carrier spin with electric
field.
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